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Abstract. A new method to study the retardation effects in mesons is presented. It is based on a generalized
rotating string model, in which a nonzero value of the relative time between the quark and the antiquark
is allowed. This approach leads to a retardation term in the Hamiltonian which behaves as a perturbation
of the nonretarded Hamiltonian and preserves the Regge trajectories for light mesons. The straight-line
ansatz is used to describe the string, and the relevance of this approximation is tested. It is shown that the
string is actually curved because of retardation, but this bending does not bring a relevant contribution

to the energy spectrum of the model.

PACS. 12.39.Ki Relativistic quark model — 12.39.Pn Potential models — 14.40.-n Mesons

1 Introduction

The retardation effect between two interacting particles is
a relativistic phenomenon, due to the finiteness of the in-
teraction speed. Light mesons are typical systems in which
these effects can significantly contribute to the dynamics,
since the light quarks can move at a speed close to the
speed of light. We present here a generalization of the ro-
tating string model (RSM) [1,2] developed in refs. [3,4],
which aims to take into account these effects in mesons.

2 Rotating string model with a nonzero
relative time

The RSM is an effective model derived from the QCD La-
grangian, describing a meson by a quark and an antiquark
linked by a straight string. Both particles are considered
as spinless because spin interactions are sufficiently small
to be added in perturbation. Our method to treat the re-
tardation effects must be considered as a first trial to take
into account such contributions in mesons. It relies on the
hypothesis that the relative time between the quark and
the antiquark must have a nonzero value. Consequently, in
our approach, the evolution parameter of the system is not
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the common proper time of the quark, the antiquark and
the string, but the time coordinate of the centre of mass
which plays the role of an “average” time. The RSM with a
nonzero relative time has been studied in detail in ref. [3].
So, we simply recall here the main points of this work.

Starting from the QCD Lagrangian and particularising
it to the case of an interacting quark-antiquark pair, an
effective Lagrangian can be derived. In units where i =
¢ =1, it reads [1]
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The first two terms are the kinetic energy operators of the
quark and the antiquark, whose current masses are m;.
These two particles are attached by a Nambu-Goto string
with a tension a. x; and w are the coordinates of the quark
i and of the string, respectively. We defined &; = 0,x;,
w = J;w, and w’ = Jgw. The string is generally assumed
to be a straight line linking the quark to the antiquark,
that is

w=0x+ (1—0)x2, 6€]0,1]. (2)

Such an ansatz is suggested in particular by lattice QCD
calculations, which show that the chromoelectric field be-
tween the quark and the antiquark appears to be roughly
constant on a straight line joining the two particles [5].
Starting from Lagrangian (1) with a straight string
given by eq. (2), one usually makes the equal-time ansatz,
i.e.
=2y =w'=7=¢ (3)
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Then, we have r = (0,7), and R = (¢, R). This procedure
considerably simplifies the equations, but neglects the rel-
ativistic retardation effects due to a possible nonzero value
of the relative time o. That is why we made in ref. [3] a less
restrictive hypothesis: We identified the temporal coordi-
nate of the centre of mass with the evolution parameter,
t = 7, and we allowed a nonvanishing relative time o.

It is then possible to derive from the Lagrangian (1) a
set of three equations for the RSM with a nonzero relative

time,
ar
0= - S - 1—2), 4a
H1y1 — Koy " (\/ Y1 \/ Y2 (4a)
L 1 9 5y . ar
— = =yt + p2ys) + 5 (Fy) + F(y2)), (4b)
r Yi Yi
1[p2+m? p2+mi
Hzg[p L4 2 2+m(1+yf)+u2(1+y§>]
M1 M2
+%(arcsin Y1 + arcsinys) + AH, (4c)
Yt
with

F) = g [resin —un/1=02] . 9

pr is the radial momentum and g; is the transverse veloc-
ity of the quark i, and y; = y1 +y2. The first relation gives
the cancellation of the total momentum in the centre-of-
mass frame, while the two last ones define, respectively,
the angular momentum and the Hamiltonian of the sys-
tem. Two auxiliary fields, denoted as u;, are introduced
to simplify the computation. They can however be inter-
preted as dynamical masses of the quarks whose current
masses are m; [6]. They can be eliminated by minimising
the energies with respect to them.

Equations (4) are identical to those of the usual RSM
(see, for example, ref. [6]), but a perturbation of the
Hamiltonian, denoted AH, is now present. It contains the
contribution of the retardation effects and is given by [3]

c
+ —=Yo—co— =0+ zag0°, (6)
a

where Y is the canonical momentum associated with the
relative time o. ¢, a3, and a4 are complicated functions
of the spatial variables [6].

Let us now consider the quantized version of our

model: L — \/L(L+1), [r, pr] = i, [0, ¥] = —i. The
Hamiltonian (4c) has then the following structure:

H(o,r) = Ho(r) + AH(o,r). (7)

The relative time only appears in the perturbation, and
Hq depends only on the radial variables. So, we can assume
that the total wave function reads

|ib(r)) = [A(0)) @ [R(r)) & [Yem (6, ) , (8)
where |R(r)) is a solution of the eigenequation

Ho(r) |R(r)) = Mo |R(r)) . (9)

617

Such a problem can be numerically solved, for instance, by
the Lagrange mesh technique [7]. The total mass is thus
given by

M = My + (A(o)| @ (R(r)] AH(r, 0) |R(r)) ® |A(0))

= My + AM. (10)
As an excited state with respect to the relative time is
irrelevant, the contribution AM is then given by the fun-
damental state of the eigenequation

AM(0)|A(0)) = AM |A(0)), (11)
where
AM(o) = (R(r)| AH(r,0) |R(r)) -
1 2 2 2
= T [2? + (3 — asas)o”] (12)

in the case m1 = ms. This constraint eliminates the un-
physical degree of freedom due to the introduction of the
relative time. Let us mention two consequences of eq. (11).

Firstly, the retardation contribution AM is negative,

AM = —%\/(cg —agaz)/{as)?,

and it thus decreases the meson mass. It has been shown
for a long time that quark models were able to roughly fit
the hadron spectrum [8]. However, an arbitrary negative
constant is still needed to shift the energies to the correct
values. Our retardation term could thus be a good physical
candidate to replace this arbitrary constant.

Secondly, the temporal part of the wave function reads

(13)

o= () oo (L),
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It is a Gaussian function centered around ¢ = 0. This
provides an interpretation of the equal-time ansatz (3) as
the most probable configuration of the system.

A simple calculation shows that AM preserves the
Regge trajectories of light mesons [3]. Moreover, our
model, supplemented by a one-gluon-exchange potential
and quark self-energy term can rather well reproduce the
spin averaged experimental meson masses of light and
heavy mesons.

3 String shape beyond the straight-line
ansatz

It is worth noting that the use of a nonvanishing relative
time is not really compatible with the straight-line ansatz.
This can be seen by the following simple considerations:
Let us assume that the world sheet of the system in the
centre-of-mass frame is a helicoid area in the case of ex-
actly circular quark orbits. The shape of the string is then
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Fig. 1. The curved string linking the quark to the antiquark
for different states.

a straight line for a slice at constant time and a curve
for a slice not at constant time. This problem was inves-
tigated in ref. [4], whose main points are summed up in
this section.

As the meson evolves in a plane, we can use for the
string the complex coordinates (w®, w,w*) defined by

Loy 9
w=—(w +1w").
Tl i)
With these coordinates, a curved string rotating at a con-
stant angular speed w can be described by the ansatz

(16)

w’(0,7) =7+ 600(1)/2, (17a)
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where the spatial deformation f has been introduced to
take into account the relative time o. Equations (17) clear-
ly describe a curved string, as can be seen by rewriting it
when 7 = 0. Then we have simply w! oc § and w? < f(6).
As o is assumed to be arbitrary, only f has to be deter-
mined thanks to the equations of motion of the Nambu-
Goto Lagrangian, supplemented by the requirement that
f vanishes at the centre of mass and at the ends of the
string. The trivial solution f = 0 is only valid if ¢ = 0.
This is the straight line without retardation. We already
gave in ref. [3] arguments showing that the bending was
small. Consequently, we can linearize the equations in f
and solve them numerically. The conclusion of ref. [4] is
that the string is curved, with a state-dependent ampli-
tude. The bending is maximal for the 1F state and de-
creases with the quantum numbers, as illustrated in fig. 1.
Moreover, the string shape between the centre of mass and
one quark can be roughly approximated by the expression

(17h)

flp) = ——p(1—p),

5 (18a)
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with p € [0,1], p = 0 being the centre of mass and p =1
the quark. The other part of the string is readily ob-
tained by a central symmetry with respect to the cen-
tre of mass. It is worth mentioning that in the case of a
vanishing angular momentum, w = 0, the solution is triv-
ially f(p) = 0. Even when the retardation is included, the
string is straight when the angular momentum is zero.

Since the string brings an energetic contribution to
the meson which is proportional to its length, it is inter-
esting to evaluate the ratio between the lengths of both
the curved and the straight strings. It is given by [4]

AL/L <2 x 1073, (19)
The length of the string is only modified by some tenths
of percent, because of the bending induced by retardation
effects. As the typical mass scale for mesons is around 1—
2 GeV, the correction due to the curved string is around
1-4 MeV. Such an order of magnitude was also obtained in
a previous study of the string deformation due to nonuni-
form rotation [9]. The contribution of the bending of the
string to the mass spectrum seems thus very small. This
is also small compared with the retardation contribution,
which can be around 100 MeV for massless quarks.

4 Conclusion

By allowing the relative time between the quark and the
antiquark in a meson to be nonzero, we have been able
to obtain a generalized rotating string model in which the
retardation effects contribute as a perturbation of the non-
retarded Hamiltonian. This contribution does not destroy
the Regge trajectories and can lead to a good agreement
with the experimental meson spectrum. We also showed
that the string was curved due to retardation, but this
bending does not influence significantly the mass spec-
trum of the model. In conclusion, our study reveals that
the usually neglected retardation effects could be a rel-
evant physical mechanism, in particular in the light me-
son sector where the retardation can give a contribution
around 100 MeV. It should be interesting to study the de-
pendence in the relative time of other observables, like
the decay width of mesons, for example, in order to make
further comparisons with experiment. We leave this for
future investigations.
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